If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-12.4x-10.5=0
a = 4.9; b = -12.4; c = -10.5;
Δ = b2-4ac
Δ = -12.42-4·4.9·(-10.5)
Δ = 359.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12.4)-\sqrt{359.56}}{2*4.9}=\frac{12.4-\sqrt{359.56}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12.4)+\sqrt{359.56}}{2*4.9}=\frac{12.4+\sqrt{359.56}}{9.8} $
| 3(x-2)+4x=10x(x+1) | | 11-7b=25 | | x+4+3=-6 | | 3x+4=1/2x+5 | | Y=x2x6/x3 | | 63-m=7 | | 7x+140=3x+112 | | 2x-17=-2+5x | | -6m+120=0 | | C=4n+36 | | 4y^2+12y+364y=0 | | (X=1,y=3) | | x2=27/12 | | X+8x-25=9x+34 | | 2x+6=5x-× | | -5=-2+3y | | 7+v/5=32 | | x-9+10=2x-11 | | 3w−6+8w+4+50=180 | | 147=21x-5+10x-3 | | 50x-20=50x-20 | | z+6/3=z+9/4 | | −4x+(−3)=–x+3.−4x+(−3)=–x+3. | | 20=10x−2 | | (n–5)(n+5)=n.n= | | 4(n-3)=2(n+4) | | 3z+7-2z=-4 | | 32w=1960 | | 4g=167 | | x-(x*0.05)=509.20 | | x−3/4=12 | | 8x-25+9x+35=112 |